The Key to a Usable System is Application Driven Scaling ## Systems = Scalable Network THE NETWORK IS THE COMPUTER!!! #### System Architecture Supported by HPSS #### Issues - Cost- we need new architectures to archive scalibility goals integrating commodity disk and tape (or equivalent) components and systems. - I/O Bandwidth - Parallel tape systems (RAITSwith parity) and associated parallel robotics. - Wider RAIDS or equivalent. - Network (or interconnection fabric) attached peripherals (NAPs). - Footprint - Media density or packaging improvements ## **ASCI** hardware requirements | Level | Effective
Latency
(CPU cycles) | Bandwidth
(Random
read/write) | Size | | Primary investment priority | | |--|--------------------------------------|---|--|----------------|---------------------------------|--| | On-chip cache**, L1 | 2-3 | 16-32 B/cycle | 10 ⁻⁴ B/flop * | | Secondary | | | Off-chip cache**, L2 (SRAM) | 5-6 | 16 B/cycle
● | 10 ⁻² B/flop * | | investment
priority | | | Local main memory (DRAM) | 30-80
(15-30) ▼ | 2-8 B/flop pk
(2-8 B/flop
sustained) | 1 B/flop | Compute engine | 1996-1998
Situation | | | "nearby nodes" | 300-500
(30-50) | 1-8 B/flop
(8 B/flop) | 1 B/flop
● | Interconnect | (1998-2000
Requirements) | | | "far away nodes" | 1000
(100-200) | 1 B/flop
(1 B/flop) | 1 B/flop
● | | Industry
Trend | | | I/O (memory disk) | 10 ms | • | 10-100 B/flop
● | | Industry gets better at meeting | | | Archive (disk-tape) | Seconds | 10 ⁻⁵ -10 ⁻⁴ B/flop
(0.001-0.01
B/flop) | 10 ² B/flop
10 ⁴ B/flop | | requirements Industry gets | | | User access | 1/10 s
(1/60 s) | OC3/desktop
(OC12-48
/desktop) | 100 users | | worse at meeting requirements | | | Multiple sites | 1/10 s | • | • | | Industry continues | | | * Equivalent integer and floating-point data calculation rates are required. ** Cacheless systems with equivalent performance are fully acceptable. to meet requirements | | | | | | | ### **Technical Goals** (Order of Magnitude Required for ASCI) | | <u> </u> | <u> </u> | <u>^</u> 2007 | |--|---|---|---| | Computing Power | • 20 TFLOPS | • 100 TFLOPS | • 1 PFLOPS | | DRAM, Disk, Tape (TB) | • 20, 10 ³ , 10 ⁵ | • 10 ² , 10 ⁴ , 10 ⁶ | • 10 ³ , 10 ⁵ , 10 ⁷ | | Local memory Bandwidth | • 160 TBytes/s | 800 TBytes/s | 8 PBytes/s | | Latency | • 32 ns | • 20 ns | • 15 ns | | Interconnect Bandwidth | • 20 TBytes/s | • 100 TBytes/s | • 1 PBytes/s | | Latency | 200 ns | 125 ns | 70 ns | | I/O bandwidth | 0.6 TBytes/s | 3 TBytes/s | • 30 TBytes/s | | Power Consumption | • 25,000 W/TFLOP | • 5,000 W/TFLOP | • 500 W/TFLOP | | Programming Model | • Hierarchical Distributed | d • Hierarchical Distributed | Distributed Shared | | | Shared Memory | Shared Memory | Memory | | System Software: | | | | | # of users supported | 100s | 1000s | 1000s | | # of threads | 10 ⁵ | 10 ⁶ | 10 ⁷ | | Sharing | static space/time | dynamic multi-user | dynamic multi-site, | | Resource Management: | | | multi-user | | Single System Image | Machine | Site | CONUS | | Optimization | Manual | Tool Set | Automatic | | Programming | individual tools, | fully integrated | fully integrated | | Environment | run-time diagnostics, | | | | | dynamic, manual | automated | automated data | | | parallelization tools | parallelization tools | layout | | • Security | • Strong Authentication | Data Protection | • Multi-level Security | | Mean time between failure | • weeks | • weeks | • months |